Universal finite-size scaling functions with exact nonuniversal metric factors.
نویسندگان
چکیده
Using exact partition functions and finite-size corrections for the Ising model on finite square, plane triangular, and honeycomb lattices and extending a method [J. Phys. 19, L1215 (1986)] to subtract leading singular terms from the free energy, we obtain universal finite-size scaling functions for the specific heat, internal energy, and free energy of the Ising model on these lattices with exact nonuniversal metric factors.
منابع مشابه
Universal Finite-size-scaling Functions
The idea of universal finite-size-scaling functions of the Ising model is tested by Monte Carlo simulations for various lattices. Not only regular lattices such as the square lattice but quasiperiodic lattices such as the Penrose lattice are treated. We show that the finite-size-scaling functions of the order parameter for various lattices are collapsed on a single curve by choosing two nonuniv...
متن کاملPercolation thresholds, critical exponents, and scaling functions on planar random lattices and their duals.
The bond-percolation process is studied on periodic planar random lattices and their duals. The thresholds and critical exponents of the percolation transition are determined. The scaling functions of the percolating probability, the existence probability of the appearance of percolating clusters, and the mean cluster size are also calculated. The simulation result of the percolation threshold ...
متن کاملUniversal scaling functions for bond percolation on planar-random and square lattices with multiple percolating clusters.
Percolation models with multiple percolating clusters have attracted much attention in recent years. Here we use Monte Carlo simulations to study bond percolation on L1xL2 planar random lattices, duals of random lattices, and square lattices with free and periodic boundary conditions, in vertical and horizontal directions, respectively, and with various aspect ratios L(1)/L(2). We calculate the...
متن کاملUniversal finite-size scaling functions for percolation on three-dimensional lattices
Using a histogram Monte Carlo simulation method ~HMCSM!, Hu, Lin, and Chen found that bond and site percolation models on planar lattices have universal finite-size scaling functions for the existence probability Ep , the percolation probability P , and the probability Wn for the appearance of n percolating clusters in these models. In this paper we extend above study to percolation on three-di...
متن کاملUniversal Scaling Functions for Numbers of Percolating Clusters on Planar Lattices.
Using a histogram Monte Carlo method and nonuniversal metric factors of a recent Letter [Phys. Rev. Lett. 75, 193 (1995)], we find that the probability for the appearance of n, n 1, 2, . . . , top to bottom percolating clusters on finite square, planar triangular, and honeycomb lattices falls on the same universal scaling functions, which show interesting behavior as the aspect ratio of the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2003